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1 Introduction

Geometric Brownian motion (GBM) is the standard modeling method for stock return dis-
tributions; however, emerging work has explored the application of the quantum harmonic
oscillator (QHO) for the purpose of capturing local oscillations due to restorative market
forces [1].

The restorative dynamics that make the quantum harmonic oscillator attractive for this
application may also be captured by modifying the traditional GBM equations by com-
bining features of the Ornstein-Uhlenbeck Process and geometric Brownian motion. The
Ornstein-Uhlenbeck Process is a mean reverting process, demonstrating a tendency to drift
towards its long-term mean. Like the restorative force modeled by the QHO, the mean
restorative attraction in this modified model is greater at larger distances from the mean.
This approach may combine attractive features of both the standard GBM and the QHO.

For the purpose of this exploration, we examined the ability of GBM, a modified GBM
with an Ornstein-Uhlenbeck mean reversion term, and the QHO to tmodel the behaviors
of a return distribution over time. The models were applied to S&P 500 returns over the
last five years. For each model, parameters were chosen by minimizing a goodness of fit
statistic using parameter search algorithms. The optimal results for each model were com-
pared, using the Cramér von Mises test statistic for multiple return windows.
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2 Model

2.1 Formulation

The equations for geometric Brownian motion (1) and the Ornstein-Uhlenbeck Process (2)
are well known.

dXt = ↵Xtdt+ �XtdBt (1)

dXt = ↵(µ�Xt)dt+ �dBt (2)

These two equations were modified, retaining the µ term in the Ornstein-Uhlenbeck process
and the respective � terms of each equation. The resulting equation is given in (3).

dXt = ↵(µ(t)�Xt)dt+ �1XtdBt + �2dBt (3)

The time-independent Schrödinger equation (4), is also well known. Prior work by Ahn and
colleagues [1], derived the appropriate Fokker-Plank equation for the probability density,
where Hn is the appropriate Hermite polynomial and En is the energy level of the nth
eigenstate (5).
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For the purpose of fitting the simulation, equation (5) is simplified to equation (6), where
⇢n is given in equation (7).
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2.2 Solving the modified stochastic di↵erential equation

The combined geometric Brownian motion and the Ornstein-Uhlenbeck Process has the
form of the general linear stochastic di↵erential equation, and may be solved likewise [2].

The equation (8) has solution (9), where the first integral is a Riemann integral and the
second is an Itó integral.

dXt = ↵(µ(t)�Xt)dt+ �1XtdBt + �2dBt (8)

Xt = X0 +

Z t

0
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Z t

0
(�1 + �2Xt)dBt (9)

This solution as the form of (10), in which the general solution (11) holds where Y is the
solution to the homogeneous equation given in (12).
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Z t
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0
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In terms of the our original equation, our solution is:
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Z t

0
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s ds+

Z t

0
�2Y
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Yt = X0 exp(

Z t

0
↵µ(s)ds� 0.5�21t+ �1Bt , t 2 [0, T ] (14)

Rather than using the long term average as µ, here µ is given as a function of time in
order to describe the local reversion behavior of the model. In the simulation, this will be
captured using an additional parameter �, which is the window of prior data to be used for
mean calculation in the simulation. Alpha is constrained to be greater than zero.
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3 Data

Returns for the S&P 500 last five years were calculated for each ⌧ 2 [1, 20], using equation
(15). Summary statistics for the resulting data sets are given in Table 1.
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St+⌧

St
) (15)

Table 1: Summary of stock returns for di↵erent holding periods (⌧)

⌧ No. of obs. Mean Std. Skewness Excess kurtosis

1 2769 0.06 3.19 -0.36 10.94
5 2765 0.06 1.27 -1.1 8.88
20 2750 0.06 0.59 -1.62 7.56

4 Results

We performed our optimization using both a particle swarm and simulated annealing al-
gorithm, selecting the lower of the two results. The optimization algorithm was performed
against to minimize the Cramér von Mises test statistic in (16) (where ⇥ are the parameter
values) [3]. In this calculation, rj = Rj � R̄, where Rj is the jth ordered return and R̄ is
the empirical historical average of the S&P 500 returns. For the QHO, we fitted the first
5 coe�cients and the m! term. The GBM fitted the µ and � terms. The modified GBM
fitted for the expanded parameters set, ↵, �1, �2, and number of prior steps to include in
the mean calculation, µsteps. Resulting parameter values are given in Table 2. Simulated
trajectories for each model using the ⌧ = 20 results are shown in Figure 1.
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Table 2: Parameter search results

Models Parameters ⌧ = 1 ⌧ = 20
GBM µ -3.035 1.563

� 0.481 0.119
T 239.404 151.625

Modified GBM ↵ 0 0.157
�1 -0.2 -0.2
�2 -0.2 -0.115

µsteps 20 50
T 998.620 877.466

QHO C0 0 0.2
C1 0 0.2
C2 0.004 0.086
C3 0.053 0.182
C4 0.061 0.133
m! 1 0.928
T 296.607 552.782

(a) GBM (b) Modified GBM (c) QHO

Figure 1: Simulated trajectories for each model with ⌧ = 20.

5 Discussion and Conclusion

Overall, the standard GBM model had the lowest Cramér von Mises test statistic across
values of ⌧ . The QHO had the second best performance, and the modified GBM performed
the worst. This, however, is inadequate to preclude the utility of the modified GBM for
modeling purposes. The optimization algorithms were run for fixed time; however, the
computations for both the QHO and the modified GBM were significantly more intensive
than the standard GBM. In particular, the computation of the stochastic integral was
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longer than all other processes. This resulted in less iterations of particle adjustment in
the particle swarm algorithm and anneal steps in the simulated annealing. Also, some of
the parameter search results turned the edge cases, suggesting that expanded parameter
ranges may have yielded lower error combinations.

From a qualitative standpoint, Figure 1 demonstrates the similarities between the QHO and
the modified GBM. The modifications of the Ornstein-Uhlenbeck process and geometric
Brownian motion successfully capture the target oscillatory behaviors. This suggests that
there may be further grounds for exploration, with a more rigorous parameter search
process.
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